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Abstract

Linear stability theory is used to analyze the stability of the basic state solution of Marangoni convection in a liquid
bridge with liquid encapsulation. By processing the linear disturbance equations numerically, stability analysis can be
evolved to a complex general eigenvalue problem. Inverse iteration algorithm combined with LZ algorithm is employed
to solve the complex generalized eigenvalue problem. The results show that the stability of the system can be enhanced
greatly by choosing reasonable matching parameters of the two fluid layers. The preferred mode of instability is axial
wave number o = 2,3 and 4, which means that the system is more sensitive to the disturbance with larger wave
lengths. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Thermocapillary convection gives strong influence
on the crystal growth process under microgravity.
Space experiments by Eyer et al. [1] have shown that
time-dependent thermocapillary convection will lead to
solute segregation which is the underlying cause of
striation. Associated with the thermocapillary instabil-
ities for the models such as horizontal liquid layer,
horizontal rectangular cavity and liquid bridge many
interesting results were obtained by experimental, the-
oretical and numerical method. As float-zone crystal
growth under microgravity is a highly promising
method, the liquid bridge (half float-zone) is usually
chosen as to be a model to study the thermocapillary
convection and its stability [2-12]. The thermocapillary
convection in the liquid bridge with liquid encapsula-
tion displays totally different from the single layer lig-
uid bridge. By encapsulation the thermocapillary
convection can be reduced and striation-free crystal can
be grown [13]. The research on multilayer liquid col-
umns was seldom reported in open literature. Li and
Saghir [14] considered two coaxial liquid columns held
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between two horizontal disks, where the melt-encaps-
ulant and encapsulant-air interfaces are present. The
two liquid columns are heated by a ring heater at the
middle of the columns with microgravity conditions
imposed to eliminate buoyancy convection. Numerical
results were offered and the reduction of Marangoni
convection in the melt was observed, but they did not
discuss the stability of the solution. The asymptotic
solution was obtained for the flow and thermal fields
for liquid bridge with liquid encapsulation by Li and
Zeng [15], and an axially heated example shows that
effective reduction of the convection in the inner layer
can be achieved through decreasing liquid viscosity of
the outer layer, choosing a proper ratio of interface
tension temperature coefficient to free surface tension
temperature coefficient and thinning the encapsulation
layer.

The main aim of the present paper is to study the
stability of the asymptotic solution obtained in [15] by
linear stability analysis. As a powerful tool inverse it-
eration algorithm is employed to solve the complex
generalized eigenvalue problem. A series of neutral
curves are drawn out and the variation of critical Ma-
rangoni number with some dimensionless parameters
are shown, the stability of the system can be enhanced
strongly by properly selection of the fluid of encapsu-
lation.
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Nomenclature

A aspect ratio, Ry/L

b radius ratio of inner and outer liquid columns:
b= R] / Rz

B matrix

Bi Biot number, AR,/ 4,

H heat transfer coefficient

L length of liquid bridge
Ma  Marangoni number, Ma = 7,8R3/1,v,

R, inner layer radius

R, outer layer radius

t time

T, gas temperature

T: temperature at cold planar face
Th temperature at hot planar face
P dimensionless pressure

Pr Prandtl number Pr = v,/K;
r dimensionless radial coordinate

u; dimensionless radial velocity component for
ith layer

w; dimensionless axial velocity component for ith
layer

z dimensionless axial coordinate

Greek symbols

p temperature gradient along z coordinate for
interface 2

b surface tension temperature coefficient

K thermal diffusivity

Y, thermal conductivity

u dynamic viscosity

v kinematic viscosity

o density

a surface tension and complex eigenvalue

Superscript and subscript

* physical property ratio of liquid i =1 liquid
i=2
Jj interfaces (j = 1,2)

2. Physical model

Consider two immiscible axisymmetric coaxial liquid
columns contained between two planar faces with a dis-
tance L apart, as shown in Fig. 1. Let R; and R, to be the
radius of the inner and the outer liquid columnar sur-
faces, respectively. The liquids are assumed incompress-
ible Newtonian fluid with density p,, thermal diffusivity
K;, thermal conductivity /;, kinematic viscosity y, and
dynamic viscosity v; (i = 1,2 for liquid 1 and liquid 2,
respectively). The liquid-liquid interface 1 and liquid—gas
interface 2 are assumed to be smooth and undeformable.
The endwalls at z = +L/2 are maintained at constant
temperature 7, and T¢, respectively. Let § be a measure of
the temperature gradient along the liquid—gas interface 2.
The outer liquid 2 is surrounded by a passive gas which
has negligible density and viscosity. The law of surface
tension versus temperature is assumed to be linear:

O'j:UOj*Vj(T}*TO) (1)
T=Th r T=Te
R, [R2
Zz
(8]
Tiuid 1
i 2
L
_ L interface 1 interface 2 >
2

Fig. 1. Physical model.

in which 7y = (7; + 7¢)/2 and ¢y, is the surface tension
of interface j at temperature Tp; 7, is the variation rate of
surface tension with temperature 7, where j = 1 for the
liquid-liquid interface and j = 2 for the liquid-gas in-
terface. Gravity is assumed to be absent. We ignore, for
the time being, the presence of the endwalls of the zone
and concentrate on the study of the convective insta-
bility of the core region.

3. Formulation and basic state solutions
3.1. Formulation

The unsteady axisymmetric motion of liquid
i (i=1,2) is governed by the fundamental equations:
Continuity equation:

(1/r)(ru;), +wiz = 0. (2a,b)

N-S equation:

i + ity + witt; = —(1/p)pir + (V> = 1/P)u;,  (2¢,d)
Wi + uwy + wiw. = —(1/p,)piz + v V?w;. (2e,f)
Energy equation:

Ty +uTy +w,T; = k,V°T,. (2g,h)

Here, u; and w; are the velocity components of liquid 7 in
the directions (r, z), T; and p; are the temperature and
pressure for liquid #, respectively; Laplacian operator, V,
is defined by
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o/ 0 ?
2 el _ _ _
V= (l/r)(ér <r8r>) ta
Egs. (2a,b)-(2g,h) are subject to the following boundary
conditions:
No-slip and isothermal conditions considered at the
rigid endwalls,

Z=L/2: w=w=0, T,=T, (3a-3f)
Z = —L/Z 1/[,':1/121':07 Z;:Th (3g—31)
on the liquid-liquid interface, r = R,

Uy = Uy = 07 (?)II'I7 31’1)
W) = Wy, (30)
h =1, (3p)
Ty = Iy T, (3q)
Wiy — oW = _VITIZ (3r)
on the liquid—gas interface, » = R,

Uy = 07 (35)
W2 = _YZTZZv (St)
— }Lszr = h[T2 — Td(Z)] (311)

The thermal boundary condition (3u) presumes that the
air temperature 7,(z) is known and that the heat trans-
ported at the liquid—gas interface can be described by
using a heat-transfer coefficient 4:

The physical quantities are bounded at r=0 as

r=0: wu,w,p, T} <oo. (3v-3y)

3.2. Basic state solutions

By scaling the parameters with proper reference
scales (R, for length, y,fR,/u, for velocity, 7,5 for
pressure, iR, for temperature (7; — T) and u,/7,f for
time), the dimensionless form of system (2a,b)-(2g,h)
can be obtained. The approximate analytical solution of
steady Marangoni convection in the core region for two
coaxial liquid columns under the assumption of linear
distribution of the gas temperature 7,(z) = —z was ob-
tained by asymptotical analysis and expressed in di-
mensionless parameters as:

it =i, =0, (4a,4b)
W =—C%(1 -2 /b?), (4¢)
Wy = —(Ch + CHInr+ C%r?), (4d)
Py = (2b*/C,,)[p* —4b*Inb — 1

— (b° — 4b> +4bInb + 3b)y*)(—2), (4e)
=2/ C20% 0 = b =4y Inb+ 1 = 2"
=), (4D)
Ty = —z+ [AMa/4"][C% (1 — 7/ (2b%)) + 4" CIT ],

(4g)

T = —z+AMa[CYr? /4
+CB(Inr—1)r7 /4+ CHr* /16 + Cyf Inr 4 Cy] . (4h)

Quantities with upper bar “~’ denote the dimensionless
basic state solution. Ma is the Marangoni number, i.c.,
Ma = 7,R3/1,v2; b denotes the radius ratio of liquid 1 to
liquid 2, or b = R, /R,. Superscript “x+” stands for the
physical property ratio of liquid 1 to liquid 2. (e.g.,
W= /1), and symbol y* is defined as y,/v,. 4 is the
aspect ratio 4 = R, /L. Symbols C,, C%, C%, C% C%,
clr, i, CiI' are complicated functions of parameters
W, k*, y*, b and Bi, which can be found in [15].

4. Linear stability analysis

To do the linear stability analysis, infinitesimal dis-
turbances ¢'(r,z,t) are introduced to the system, thus
any physical variable, ¢(r,z,?), is expressed in the form
of q(r,z,t) = q(r,z) + ¢'(r,z,t), where q(r,z) is the basic
state solution. The normal mode will be of the form
(dropping primes)

q(r,z,t) = §(r) exp(ioz + ot) (5)

in which o« is axial disturbance wave number. The
complex eigenvalue ¢ = gz +10; contains the growth
rate o and the phase speed 6; = o;/a of the disturbance
wave. Thus, the disturbance equations in normal-mode
form can be written as:

iy + ;)7 + ioov; = 0, (6a, 6b)
ZH(thyry + 7 — 0700 — G /1)
— iaMaP " Wi, — ZGp,, = MaPr™ ail;, (6c,6d)
ZH; (Wi + Wi [ 7 — oczw,-) - iocMaPr_lvT/,-W,-
— Map; ' Dw,ii; — iaZG,p, = MaPr" oW, (6e, 6f)
TH; (T, + T, )1 — o2 T;) — iaMaw, T;
— MaT.w; — MaT.i; = Maaf",-7 (6g, 6h)
r=b: Gy=ip=w —="T -1
= )'DIy — DT,
= Dw; — DV /" +iay* /" = 0, (6i-6n)
r=1: i, =DW, +ialy = DI +Bil> =0, (60-6q)
r=0: i =DWw =DI =0, (6r-6t)

where Pr is Prandtl number of the outer fluid layer, or
Pr= Vz/Kz, D= d/dr, ZG1 = l/p*, ZG2 = 1, ZH] = V*,
ZH, =1, TH, = k*, TH, = 1. Egs. (6a,6b)—(6r-6t) con-
stitute a set of complicated ordinary-differential equa-
tions which involve the dependency of ¢ on time ¢.

In order to determine the change of ¢ with varying
Ma in parameter space, we construct a discrete version
using finite-difference approximation on staggered grids
by the primitive variable method, which is a complex,
generalized eigenvalue problem of the form:

Ax = oBx, (7
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where x is a (4N — 6) dimensional column vector of
unknown velocity, temperature and pressure at the
nodes of the appropriate grid. (N is the number of half
section through the axle, N = N; + N,, N, for inner layer
and N, for outer layer, respectively), 4 and B are
(4N — 6) x (4N — 6) complex matrices. 4 is a compli-
cated band matrix. 4 and B can be partitioned as

_ | An A _|Bu 0
A‘[@ Azz]’ B‘{o 0]

with 411, By € Cyn and 4y € C,,,. Here m is the num-
ber of wunknown velocities and temperatures,
m = 3N — 6, n is the number of unknown pressures,
n = N. By, is a diagonal matrix.

5. Numerical procedure

The procedure of stability analysis in this paper is to
fix the values of u*, p*, 2*, k*, y*, Pr, Bi, b as well as the
axial wave number o and search for the eigenvalues of
system (7) with largest real part of ¢* in varying the
value of Ma. We take Ma* corresponding to oy =0,
represents the value above which the infinitesimal dis-
turbances with axial wave number, o, will grow. The
critical Marangoni number, Ma,, is the global minimum
of Ma* over o in parameter space defined by

MGC(!‘*7P*7)»*> K*7V*7P"7Bl.7 b)
=minMa (1", p*, 2", K", y", Pr, Bi, b, )

above which the system will lose its stability. Obviously,
the key of our stability analysis is to find out the critical
value, Ma., at which an eigenvalue crosses the imaginary
axis first. Since it is expected that this corresponds to a
simple Hopf bifurcation point, there should be exactly
one complex-conjugate eigenvalue pair with nonzero
imaginary part, termed the leading eigenvalue, which
crosses the imaginary axis with nonzero speed. The in-
verse-iteration algorithm is employed in the present
computation. The inverse-iteration algorithm is a very
efficient method to compute selected eigenvalues and
eigenvectors of a generalized eigenvalue problem, by
which the interesting eigenvalue can be found and the
band structure of matrix is not destroyed. A parameter
s, estimated by LZ algorithm for relatively coarse dis-
cretizations, known as the shift parameter is introduced.
The eigenvalues of the resulting computations are those
which are closest to the value of this parameter chosen
for a particular computation.

In order to compute the critical Marangoni number
for a fixed wave number, the routines ELZHC, ELZVC
from STYR library, the routines IVI containing two
modified LINPAK routines CGEFA and CGESL, and
the routines CMAE and CMBE utilized for the assign-
ment of matrices A and B are employed. In calculation,

4. The effect of parameter y*

the node number N =40 is selected after a detailed
comparison with other values of N, by which the pre-
cision is guaranteed.

6. Results and discussion

A series of neutral curves and curves for showing the
variation of critical Marangoni number Ma, and critical
phase speed Cr, with physical parameters are drawn out.
Neutral stability curves gives the sufficient condition of
loosing stability of the system, this means that the sys-
tem will be unstable above the neutral curves. For the
complex two layer system with multidimensional
parameter space, the method used to determine the in-
fluence of different dimensionless parameters on the
stability of the system is to change one assigned
parameter in a certain range with others fixed. For
example, if we fixed pu* =1, p*=1,..., this means
Uy = Wy, p; = py, and so far. Some conclusions can be
extracted from Figs. 2-9 as below:

1. As shown in the neutral curves, the stability of the
system may change with different parameter match-
ing mode and different wave number. The critical
wave numbers o, corresponding to the minimum of
the neutral curves. The system exhibits long wave in-
stability for most cases.

2. The stability of the system could be enhanced by

means of (1) increasing the viscosity ratio u*, see
Fig. 2(b); increasing the density ratio p*, see Fig.
3(b); and increasing thermal diffusivity ratio k*, see
Fig. 5(b); or (2) decreasing the thermal conductivity
ratio A", see Fig. 4(b).

3. Thinning liquid encapsulation layer will strongly en-
hanced the stability of the system, see Fig. 9(b). The
critical Marangoni number, Ma, is 166 at b = 0.1,
4563 at b = 0.6, 3755 at b = 0.8, and then increases
sharply when parameter b approaches to 1.

* is strong and not monot-
onous. The most outstanding feature of the plotted
Ma. — y* curve is tower-like shape as shown in
Fig. 6(b), Ma. is 20231 at tower top corresponding to
7* = 0.6, and varies almost over an order of magnitude.
Increasing the difference of the surface tension temper-
ature coefficient y* will weaken the stability of the sys-
tem. Choosing properly the value of y*, such as
7* = 0.3 to 0.8, may lead to a much more stable system.

5. Biot number Bi and Prandtl number Pr show weak
influence on the stability of the system.

6. Among all the parameters, y* and b may play most
important role in the stability of the system. The
maximum critical Marangoni number Ma. obtained
by varying y* and b could be 100 times higher than
the minimum value of it.

7. The critical phase speed is defined by Cr. = g/a.
There exist some relationship between critical phase
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Fig. 2. (a) Neutral curves for various of p* with p* =" =x* =9y =Pr=1, Bi=0, b =0.9. (b) Critical Marangoni number and
critical phase speed versus y* with p* =" =k* =9 =P =1,Bi=0,5=0.9.
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Fig. 4. (a) Neutral curves for various of 1" with y* = p* =x* =9y*=Pr=1, Bi=0, b =0.9. (b) Critical Marangoni number and
critical phase speed versus A" with p* = p* =k* =9 =P =1,Bi=0,5=0.9.

speed and critical frequency f; = o.Cr./2n. One can
see from Figs. 2(b), 3(b), 4(b), 5(b), 6(b), 7(b), 8(b),
9(b)), the change of the critical phase speed with
parameters u*, A°, k*, y*, Bi, and b is not monoto-

nous. In some cases higher critical Marangoni num-
ber corresponds to lower critical phase speed as
shown in Figs. 2(b), 5(b), 6(b) and 9(b). The depen-
dency of critical phase speed on parameters y* and
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b is more remarkable as shown in Figs. 6(b) and 9(b). 8. Under liquid encapsulation, the system displays totally

Biot number Bi and p* show a weak effect on the crit-

ical phase speed.

different behavior from the single-layer case. Because of
the extension of the parameter space for the double
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layer system, there exists a great variety of matching the
parameters of the two fluids, so that the degrees of free-
dom for controlling the motion of the inner liquid are
greatly increased. A proper choice of the parameters
and their matching mode would lead to the expected
behavior of the system. Calculations show that, even
with a limited combination of the parameters offered
by the present paper, the critical Marangoni number
could vary over a wide range from O(10?) to O(10%).
Obviously, this is of great importance in engineering
practice and provides a means of flexibly controlling
Marangoni convection in a liquid system.

It is worthwhile mentioning that, as the end effect is

very important, and hence the assumption of non-de-
formable interfaces should be relaxed.

7. Conclusions

1. A mathematical model describing the unsteady axi-

symmetric thermocapillary convection in two immis-
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= Pr=1, Bi = 0. (b) Critical Marangoni number and critical

icible axisymmetric coaxial
proposed in the present paper.
By processing properly the linearized disturbance
equations using finite-difference approximation,
stability analysis can be evolved to a complex gener-
alized eigenvalue problem.

Inverse-iteration algorithm is applied successfully to
solve the complex generalized eigenvalue problem.
Significant results for engineering applications have
been obtained which show that the stability of the
system can be enhanced greatly by choosing reason-
able matching parameters of the two fluid layers.
The matching procedure involves increasing the vis-
cosity ratio and density ratio of the two fluids; choos-
ing properly the fluid of encapsulation, so as to
possess a large thermal conductivity, small thermal
diffusivity and proper temperature coefficient ratio
of interface tension to free surface tension, and thin-
ning the encapsulation layer. The preferred modes of
instability mostly corresponds to the disturbances
with larger wave lengths.

liquid columns is
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